Requested Patent: WO9110998A1

Title: DATA STORAGE ;
Abstracted Patent: WO9110998 ;
Publication Date: 1991-07-25 ;
Inventor(s):

SIMMES MARK (GB); BRAMHALL PETER (GB); VAN MAREN DAVID (US) ;

Applicant(s): HEWLETT PACKARD LTD (GB) ;
Application Number: WO1981GB00082 19910118 ;
Priority Number(s): GB19900001334 19900119 ;

IPC Classification: G11B20/00; G11B20/12 ;
Equivalents: EP0464181 (W09110998), JP5500878T
ABSTRACT:

A data storage method for writing compressed data organised in the form of records (CRn) to
tape (10) characterised by inserting into the datastream ancillary information which is extra to the
data compression process.

LY

WORLD INTELLECTUAL PROPERTY ORGANIZATION

P C‘[1 International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 91/10998

G11B 20/00,20/12 _ A1 | 43) International Publication Date: 25 July 1991 (25.07.91)

(21) International Application Number: PCT/GB91/00082 l74) Agent: SMITH, Denise, Mary; Hewlett-Packard Limited,,
Intellectual Property Section, Building 2, Filton Road,

(22) Intemational Filing Date: 18 January 1991 (18.01.91) Stoke Gifford, Bristol BS12 6QZ (GB).

(81) Designated States: AT (European patent), BE (European
patent), CH (European patent), DE (European patent),

(30) Priority data:

9001334.3 19 January 1990 (19.01.90) GB DK (European patent), ES (European patent), FR (Eu-
ropean patent), GB (European patent), GR (European
patent), IT (European patent), JP, LU (European pa-

(71) Applicant (for all designated States except US): HEWLETT- tent), NL (European patent), SE (European patent), US.

PACKARD LIMITED [GB/GB]; Cain Road, Brack-

nell, Berkshire RG12 1HN (GB).

Published
(72) Inventors; and With international search report.
Before the expiration of the time limit for amending the

(75) Inventors/Applicants (for US only) : VAN MAREN, David
[US/US]; Hewlett-Packard Company, Greeley Storage claims and to be republished in the event of the receipt of

Division R&D, 700 71st Street, Greeley, CO 80634 (US). amendments.
SIMMES, Mark [GB/GB]; BRAMHALL, Peter [GB/
GB]; Hewlett-Packard Limited, Filton Road, Stoke Gif-
ford, Bristol BS12 60Z (GB).

' (57) Abstract

(54) Title: DATA STORAGE

ENTITY 1 14
r % N
2= ? N ER
/ \ SN—— T
Lo s [] CEE S[X E_::M: M|B[E 60”"'
JHUERRGE
0 1

11 X011 CBCE,

11000 X 0 00| SKPENRY

A data storage method for writing compressed data organised in the form of records (CR,) to tape (10) characterised by
inserting into the datastream ancillary information which is extra to the data compression process.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.
AT Austria
AU Australia
BB Barbados
BE Belgium
8F Burkina Faso
BG Bulgaria
B) Benin
8R Brazil
CA Canada .
CF Cenural African Republic
T OG- C_ong9 - .
T CH Switzerland -
.t Cbte d'lvoirc
c™m Cameroon
cs Czechoslovakia
DE Germany
DK

Denmark

Spain

Finland

France

Gabon

United Kingdom
Guinea

Greece
Hungary

Italy

“Japan -

" Democratic Pcoplc‘; Republic

of Korea
-Republic of Korca
Liechtenstein

Sri Lanka
Luxcmbourg
Monaco

MG
MN

Mw

E2gE

RO

Gddg2h

Madagascar
Mali
Mongolia
Mauritania
Malawi
Netherlands
Norway
Poland
Romania
Sudan

- Sweden

Sencgal

" Sovict Union’

Chad
Togo
United States of America

R

-

WO 91/10998 A PCT/GB91/00082

10

15

20

25

30

- 35

1

DATA_STORAGE

The present invention relates to the compression. of
user data and its storage on tape.

It is known to provide a tape drive having data
compression capability (a DC drive) so that, as data arrives
from a host, it is compresséd before being written to tape
thus increasing the tape storage capacity. DC drives are
also able to read compressed data from tape and to
decompress the data before sending it to a host. It is also
possible for a host to perform software compression and/or
decompression of user data.

There is more than one type of data compression. For
example, removing separation marks eg. designating records,
files etc. from the datastream and storing information
regarding the positions of these marks in an index
effectively compresses the user data. Another, gquite
different approach, is to compress user data by removing
redundancy in the data eg. by replacing user data words with
codewords from which the original data can be recovered. It
is the latter type which is being referred to in this
specification when the words "data compression" or
abbreviation DC is used.

According to the present invention we provide a data
storage method for writing compressed data organised in the
form of records to tape characterised by inserting into the
datastream ancillary information which is extra to the data
compression process.

The ancillary information may comprise error checking
information. Furthermore, the ancillary information may
comprise data separation information ie. information which
could be used to separate the data later.

The aim of inserting this extra information into the
datastream as part of a data compression algorithm is to

.render ‘the = datastream . particularly - suitable for fast.-
. operation and easy checking of data error conditions. .- For

example, codewords representing the uncqmpressed byte count

WO 91/10998 PCT/GB91/00082

10

15

20

25

30

.35

2

and/or a redundancy check could be inserted after an "end of
record" codeword. These codewords could be utilised during
error checklng operatlons but could be Sklpped if they are
not requlred or are 1nappropr1ate for particular tape drive.

The method preferably comprises writing the ancillary
information to tape in uncompressed form. This is preferred
so that the ancillary information is available to a non-DC
tape drive.

The method may comprise inserting into thevdatastream
ancillary information in association with one or more
records.

The method may comprise inserting into the datastrean
a header portion containing ancillary information relating
to one or more records following the header portion.

The method may further comprise inserting into the
datastream a trailer portion containing ancillary
information relating to one or more records preceding the
trailer portion.

Alternatively, or as well, the method may comprise
organising data records into groups independently of the
record structure of the data, and writing information
regarding the records in a group to an index associated with
the group.

In an embodiment to be described, the method comprises
writing information to the group indices in terms of
entities, where an entity comprises one or more records. In
that embodiment, the method comprises writing ancillary
information to a header associated with each entity.

The present invention also provides a storage device
for compressing user data and writing compressed data to
tape which is operable in accordance with a method as
defined above.

Particular embodiments of the present invention will
now be described, by way of example, with reference to the
accompanying dlagrammatlc drawings in which: - ’

Figures A and B are dlagrams relatlng' to a - data

'compre551on algorithm;

)

WO 91/10998

10

15

20

25

30

- 35

PCT/GB91/00082

3

Figure 1 is a multi-part diagram illustrating a scheme

: for storing computer data where:

(a) is a dlagram representlng a sequence of data
records and logical separation marks sent by a user (host)
to data storage apparatus;

(b) and (c) are diagrams illustrating two different
arrangements for storing the sequence of Figure 1 (a) on
tape?; .
Figure 2 is a diagrem of a group index;

Figures 3 and 3A are diagrams of general block
access tables; '

Figures 4 and 4A are diagrams of specific block access

tables;
Figures 5 - 7 are diagrams of further schemes for

storing computer data;

Figure 8 is a diagram illustrating possible valid
entries for the block access table of a group.

Figures 9 and 10 are further diagrams of schemes for
storing computer data:

Figure 11 is a diagram illustrating the main physical
components of a tape deck which employs helical scanning and
which forms part of the data storage apparatus embodying the
invention;

Figure 12 is a diagrammatic representation of two data
tracks recorded on tape using helical scanning;

Figure 13 is a diagrammatic representation of the
format of a main data area of a data track recorded in
accordance with the present data storage method;

Figure 14 is a diagrammatic representation of the
format of a sub data area of a data track recorded in
accordance with the present data storage method:;

Figure 15 is a diagram showing for the present method,
both the arrangement of data frames in groups within a data
area of a tape and details of an index recorded within each

.group of frames i

Fxgure 16 is a block dlagram of the main components of
the data storage apparatus embodylng the invention;

WO 91/10998 : ' ' ‘ PCT/GB91/00082

10

15

20

25

30

. 35

4

Figures 17 and 18 ~are block dlagrams relating to the
data compression processor, . .

Figure 19 is more detailed functional block dlagram of
a group processor of the data storage apparatus;

Figures 20A and 20B are flow charts of algorithms
implemented by the drive apparatus in searching for a
particular record on a tape.

Further information regarding data compression,
including details of a specific DC algorithm will first be
given.

The aim of a data compression process is to remove
redundancy from data. One measure of compression efficiency
is called "compression ratio" and is defined as:

Length of uncompressed input

Length of compressed output

This is a measure of the success of a data compression
process. The larger the compression ratio, the greater the
compression efficiency.

One way of performing data compression is by
recognising and encoding patterns of input characters, ie.
a substitutional method.

According to the LZW algorithm, as unique strings of
input characters are found, they are entered into a
dictionary and assigned numeric values. The dictionary is
formed dynamically as the data is being compressed and is
reconstructed from the data during decompression. Once a
dictionary entry exists, subsequent occurrences of that
entry within the datastream can be replaced by the numeric
value or codeword. It should be noted that this algorithm
is not 1limited to compressing ASCII text data. Its
principles apply equally well to blnary files, data bases,

_1mag1ng data,'and so on.

"Each dictionary entry consists of two items: (1) a
unique string of data bytes that the algorithm has found

L 7]

\ (R

PCT/GB91/00082

WO 91/10998

5

within the data, and (2) a codeword that represents this
combination of bytes. The dlctlonary can contain up to 4096

- entries. The first elght entrles are reserved. codewords

10

15

20

25

30

35

that are used to flag and control spec1f1c conditions. The
next 256 entries contain the byte values 0 - through 255.
Some of these 256 entries are therefore codewords for the
ASCII text characters. The remaining locations are linked-
list entries that point to other dictionary locations and
eventually terminate by pointing at one of the byte values
0 through 255. Using this linked-list data structure, the
possible byte combinations can be anywhere from 2 bytes to
128 bytes long without requiring an excessively wide memory
array to store them.

In a hardware implementation of the scheme which will
be more fully described later, the dictionary is built and
stored in a bank of random—-access memory (RAM) that is 23
bits wide. Each memory address can contain a byte value in
the lower 8 bits, a codeword or pointer representing an
entry in the next 12 bits, and three condition flags in the
upper 3 bits. The number of bits in the output byte stream
used to represent a codeword ranges from 9 bits to 12 bits
and corresponds to dictionary entries that range from 0 to
4095. During the dictionary building phase, until 512
entries are made into the dictionary 9-bits are used for
each codeword, after the 512th entry 10-bits are needed for
the codewords, after the 1024th entry 11-bits are needed for
the codewords, and for the final 2048 entries 12-bits are
needed for the codewords. Once the dictionary is full, no
further entries are built, and all subsequent codewords are
12 bits in 1length. The memory address for a given
dictionary entry is determined by a complex operation
performed on the entry value. Since the dictionary can
contain 4096 entries, it would appear that 4K bytes of RAM
is all that is needed to support a full dictionary. This is
in fact the case during decompress1on.u Howevef, durlng
compre551on, ‘more than 4K bytes of RAM is needed. because of.

dlctlonary'"colllslons" that occur during the dictionary

WO 91/10998 ‘ o PCT/GB91/00082

10

15

20

25

30

35

6

building phase. This is when two different string character

_comblnatlons map to the same location in the dlctlonary ‘RAM

and is a consequence of the finite resources in dictionary
RAM and the complex process of dictionary building during
compression. When a dictionary collision occurs, the two
colliding values are recalculated to two new

locations and the original 1location is flagged as a
collision site.

An important property of the algorithm is the coupling
between compression and decompression. These two operations
are tied together both in the compression and decompression
processes and in the packing and unpacking of codewords into
a byte stream. The nature of the compression algorithm
requires that the compression process and the decompression
process be synchronized. Stated differently, decompression
cannot begin at an arbitrary point in the compressed data.
It begins at the point where the dictionary is known to be
empty or reset. This coupling provides one of the
fundamental advantages of the algorithm, namely that the
dictionary is embedded in the codewords and does not need to
be transferred with the compressed data. Similarly, the
packing and unpacking process must be synchronized. Note
that compressed data must be presented to the decompression
hardware in the proper order.

Fig A is a simplified graphical depiction of the
compression algorithm referred to above. This example shows
an input data stream composed of the following characters:
RINTTINTTIN. To follow the flow of the compression
process, Fig A should be viewed from the top to the bottom,
starting at the left and proceeding to the right. It is
assumed that the dictionary has been reset and initialized
to contain the eight reserved codewords and the first 256
entries of 0 to 255 including codewords for all the ASCII
characters. .

The compre551on algorithm executes the fcllow1ng',
process with each byte in the data stream‘
1. Get the input byte.

n

WO 91/10998

10

15

20

25

30

. 35

PCT/GB91/00082

7

2. Search the dictionary with the current input sequence
and, if there is. a match, get another input byte and add it

" to the current Sequence, remembering the. largest sequence - -

that matched.

3. Repeat step 2 until no match is found.
4. Build a new dictionary entry of the current "no match"
sequence.

5. Output the codeword for the largest sequence that

matched.
In this example, the compression algorithm begins

after the first R has been accepted by the compression
engine. The input character R matches the character R that
was placed in the dictionary during its initialization.
Since there was a match, the DC engine accepts another byte,
this one being the character I. The sequence RI is now
searched for in the dictionary but no match is found.
Consequently, a new dictionary entry RI is built and the
codeword for the 1largest matching sequence (i.e., the
codeword for the character R) is output. The engine now
searches for I in the dictionary and finds a match just as
it did with R. Another character is input (N) and a search
begins for the sequence IN. Since IN does not match any
entries, a new one is built and the codeword for the largest
matching sequence (i.e., the codeword for the character I)
is output. This process continues with a search for the
letter N. After N is found, the next character is input and
the dictionary is searched for NT. Since this is not foungd,
a dictionary entry for NT is built and the codeword for N is
output. the same sequence occurs for the characters T and
I. A codeword for T is output and a dictionary entry is
built for TI.

Up to this point, no compression has occurred, since
there have been no multiple character matches. In
actuality, the output stream has expanded sllghtly, since
four 8-bit characters have. been replaced by .four 9-bit
chewo:ds. (That represents a 32-bit to 36-bit expansion,

WO 91/10998 PCT/GB91/00082

10

15

20

25

30

. 35

8

or a 1.125:1 compression ratio.) However, after the next
character ‘has been input, compre551on of the data beglns.
At this p01nt the engine is searchlng for the IN sequence.
Since it finds a match, it accepts another character and
begins searching for INT. When it does not find a match, it
builds a dictionary entry for INT and outputs the previously
generated codeword for the sequence 1IN. Two 8-bit
characters have now been replaced by one 9-bit codeword for
a compression ratio of 16/9 or 1.778:1.

This process continues and again two characters are
replaced with a single codeword. The engine begins with a
T from the previous sequence and then accepts the next
character which is an I. It searches for the TI sequence
and finds a match, so another byte is input. Now the chip
is searching for the TIN sequence. No match is found, so a
TIN entry is built and the codeword for TI is output. This
sequence also exhibits the 1.778:1 compression ratio that
the IN sequence exhibited. The net compression ratio for
this string of 9 bytes is 1.143:1. This is not a
particularly large compression ratio because the example
consists of a very small number of bytes. With a larger
sample of data, more sequences of data are stored and larger
sequences of bytes are replaced by a single codeword. It is
possible to achieve compression ratios that range from 1:1
up to 110:1.

A simplified diagram of the decompression process is
shown in Fig B. This example uses the output of the
previous compression example as input. The decompression
process looks very similar to the compression process, but
the algorithm for decompression is less complicated than
that for compression, since it does not have to search for
the presence of a given dictionary entry. The coupling of
the two processes guarantees the existence of the
appropriate dictionary entries during decompression. The
algorlthm 51mp1y uses the input codewords to look up- the
byte sequence in the dlctionary and then builds new entrles

@©

WO 91/10998 | PCT/GB91/00082

10

15

20

25

30

.. 35

9

using the same rules that the compression algorithm uses.
This is the only way that the decompression algorithm can
recover the compressed data w1thout a specxal dictionary
sent with each data packet.

As in the compression example, it is assumed that the
dictionary has been reset and initialized to contain the
first 256 entries of 0 to 255. The decompression engine
begins by accepting the codeword for R. It uses this
codeword to look up the byte value R. This value is placed
on the last-in, first-out (LIFO) stack, waiting to be output
from the chip. Since the R is one of the root codewords
(one of the first 256 entries), the end of the list has been
reached for this codeword. The output stack is then dumped
from the chip.' The engine then inputs the codeword for I
and uses it to look up the byte value I. Again, this value
is a root codeword, so the output sequence for this codeworad
is completed and the byte value for I is popped from the
ocutput stack. At this point, a new dictionary entry is
built using the last byte wvalue that was pushed onto the
output stack (I) and the previous codeword (the codeword for
R). Each entry is built in this manner and contains a byte
value and a pointer to the next byte in the sequence (the
previous codeword). A linked list is generated in this
manner for each dictionary entry.

The next codeword is input (the codeword for N) and
the process is repeated. This time an N is output and a new
dictionary entry is built containing the byte value N and
the codeword for I. The codeword for T is input, causing a
T to be output and another dictionary entry to be built.
The next codeword that is input represents the byte sequence
IN. The decompression engine uses this codeword to
reference the second dictionary entry, which was generated
earlier in this example. This entry contains the byte value
N, which is placed on the output stack, and the pointer to
the codeword for I, which becomes the current codeword,

-This new codeword is used to f1nd the next byte (I), which

WO 91/10998 PCT/GB91/00082

10

15

20

25

30

35

10

is placed on the output stack. Since this is a root
codeword, the look up process is complete and the output
stack is dumped in reverse order, that is, I is output
first, followed by N. The same process is repeated with the
next two codewords, resulting in the recovery of the
original byte sequence RI NT I NT I N.

Two of the reserved codewords mentioned above which
are inserted into the data stream during data compression
are the RESET and FLUSH codewords. The RESET codeword
signifies the start of a new dictionary. The FLUSH codeword
signifies that the DC chip has flushed out its buffer ie. it
passes through the data currently held in the buffer without
compressing that data prior to filling the buffer again with
successive data and recommencing data compression. The DC
chip inserts RESET and FLUSH codewords into the data strean
in an algorithm-dependent manner. However, the tape format
places constraints on when certain RESET and FLUSH codewords
must occur and also ensures the writing of certain
information so as to enable the utilisation of certain ones
of the RESET and FLUSH codewords in order to improve access
to the compressed data.

Decompression can only begin from a RESET codeword
because the dictionary has to be rebuilt from the data.
However, decompression can then stop at any subsequent FLUSH
codeword even though this is not at the end of that
particular dictionary. This is why it is advantageous to
put FLUSH codewords at the end of each record so as to
enable selective decompression of segments of data which are
smaller than that used to build a dictionary.

At the beginning of a dictionary, the'majority of the
data is passed through the DC chip without compression
because most of the data will not have previously been seen.
At this stage, the compression ratio is relatively small.
Therefore, it is not desirable to have to restart a

. dlctlonary so- often as to reduce compre551on efflclency.
' The main effect of putting extra information into the .

datastream is to reduce coupling between the data

(]

L

[3)

WO 91/10998

10

15

20

25

30

35

PCT/GB91/00082

11

compression engine and the system controller. Therefore,
the only information which belongs in the datastream . -is that

- which is not directly needed by the controller,. but is

potentially of value to the decompression process.

Error checking information is perhaps the best example
of information which can go into the datastream. It can get
inserted during compression, and checked upon decompression.
A CRC is a good example of this.

CRC stands for "Cyclic Redundancy Check."” It is a
syndrome generated by a series of bytes. It is used by some
data transmission methods to provide a check that data
corruption has not occurred during the transmission. It
would be generated and sent immediately following the data.
The receiver of the data would also generate it, and then
verify that its value matched the one received from the
transmitter. If a four-byte CRC were used, for example, the
chance of there being undetected errors would equal 2 to the
32nd.

The CRC is also used in data storage, where it is
generated and written to the tape. The read process, then,
generates its own and compares it with the one read from
tape.
' If a CRC were put into the datastream, it can only go
after all the data that is used to generate it. Two choices
still exist, however.

1. It can be compressed along with the data in the

record.

2. It can be inserted into the datastream
uncompressed after the record.

If the CRC is compressed, the value of it would not be
available to non-decompressing drives. The tape format
specification, for instance, would not need to leave room
for it. "It would be a part of the compression algorithm
(rather than ancillary information in the data format).
However, because it is a function of uncompressed bytes, the

'CRC will be available to the hardware on the .uncompressed

side of the compression engine.

WO 91/10998 . PCT/GB91/00082

10

15

20

25

30

35

12

If the CRC is inserted, uncompressed, into the

datastream, the CRC would be truly anc1llary, and. specified.
" as ‘such by the’ format definition. It would be available to

any drive understanding the format, without any information
about the compression algorithm.

In the interest of compression efficiency, the second
choice is better, since it is unlikely that the CRC would be
found in ANY dictionary (- it is essentially a pseudo-random
number which is a function of the bytes generating it). If
compressed, then, it will expand to approximately 1.5 times
its original size. a four-byte CRC would take up to 6 bytes
of storage if compressed, and only 4 if uncompressed. 1In
the interest of reduced coupling, however, the first choice
is better.

Another example of the type of information which might
fit into the datastream is information which could be used
to separate the data later. If the system controller does
not need this information during writing or reading, and it
can be generated on writing and skipped over on reading in
a simple fashion, it fits well into the datastream.

This sort of information is of value in a compressing
environment, since even identically-sized records will
produce variable-length records when compressed.

The Flush/EOR codeword is a data separator,
automatically inserted by the DC chip and removed by it.
Only decompressing drives have access to these separations,
however. Extra separation information would have to be
included in the datastream for non-decompressing drives to
have access to these boundaries. This would be ancillary
information.

This could be a compressed byte count (CBC). 1If the
CBC were inserted into the format after the EOR codeword and
uncompressed, a non-decompressing drive could use these as

. pointer information in a linked-list. Starting at the end

of a collection of compressed records, each having a CBC at
the end, it would walk into the data. and calculate where
each compressed record in the collection begins and ends.

L]

WO 91/10998 PCT/GB91/00082

10

15

20

25

30

- 35

13

If both are used (EOR codewords/CBCs), the format is

‘redundant. This redundancy_can provide another check for
-the validity of the data that has been decompressed. The

decompressor could compare the number of bytes it
decompressed with the count in the datastream and signal an

. error if they did not match.

Methods for the storage of data, whether compressed or
uncompressed, on tape will now be described.

The supply of the data from a user (host computer) to
a tape storage apparatus will generally be accompanied by
user separation of the data, whether this separation is the
physical separation of the data into discrete packages
(records) passed to the storage apparatus, or some higher
level conceptual organisation of the records which is
expressed to the storage apparatus by the host in terms of
specific signals. This user-separation of data will have
some particular significance to the host (though this
significance will generally be unknown to the tape storage
device). It is therefore appropriate to consider user
separation as a logical segmentation even though its
presence may be expressed to the storage apparatus through
the physical separation of the incoming data.

Figure 1 (a) illustrates a sequence of user data and
special separation signals that an existing type of host
might supply to a tape storage apparatus. In this example,
data is supplied in variable-length records Rl to R9; the
logical significance of this physical separation is known to
the host but not to the storage apparatus. In addition to
the physical separation, user separation information is
supplied in the form of special "file mark" signals FM. The
file marks FM are provided to the storage apparatus between
data records; again, the significance of this separation is
unknown to the storage apparatus. The physical separation
into records provides a first level of separation while the
file marks provide. a second level forming a-hierarchy with-

the first level. o o o

WO 91/10998 o PCT/GB91/00082

10

15

20

25

30

35

14

Figure 1 (b) shows one possible physical organisation
for storing the user qatéiand user separation information of

- Figure 1 (a) on a tape 10, this or_éani’sation kgeiﬁg in

accordance with a known data.storage method. The mapping
between Figure 1 (a) and 1 (b) is straightforward - file
marks FM are recorded as fixed-frequency bursts 1 but are
otherwisé treated as data records, with the records R1-R9
and the file marks FM being separated from each other by
inter-block gaps 2 where no signal is recorded. The inter-
block gaps 2 effectively serve as first-level separation
marks enabling the separation of the stored data into the
user-understood logical unit of a record; the file marks FM
(fixed frequency burst 1) form second-level separation marks
dividing the records into logical collections of records.

Figure 1 (c) shows a second possible organisation
which is known for storing the user data and user separation
information of Figure 1 (a) on tape 10. In this case, the
user data is organized into fixed-size groups 3 each
including an index 4 for containing information about the
contents of the group. The boundary between two groups 3
may be indicated by a fixed frequency burst 5. The division
of data into groups is purely for the convenience of the
storage apparatus concerned and should be transparent to the
host. The user data within a group is not physically
separated in any way and each record simply continues
straight on from the end of the preceding one; all
information regarding separation of the data in a group both
into records and into the collection of records delimited by
file marks is contained in the index of the group. In the
present example, records Rl to R8 and the first part of R9
are held in the illustrated group 3.

The 1length of the index 4 will generally vary
according to the number of separation marks present and the
number of records in the group; however, by recording the
index length in.a predetermined location in the index with

feépect tp the g:oup‘ends, the boundary betweeﬁ.the index

and the last byte can be identified. A space with undefined

“

L]

" WO 91/10998

10

15

20

25

30

35

PCT/GB91/60082

15

contents, eg. padding, may exist between the end of the data
area and the first byte of the index. ' ,

The contents of the index 4 are shown in Flgure 2 and,
as can be seen, the index comprises two main data
structures, namely a group information table 6 and a block
access table 7. The number of entries in the block access
table 7 is stored in a block access table entry (BAT ENTRY)
count field in the group information table 6. The group
information table 6 also contains various counts, such as a
file mark count FMC (the number of file marks written since
a beginning of recording (BOR) mark including any contained
in the current group) and record counts RC (to be defined).

The block access table 7 describes by way of a series
of access entries, the contents of a group and, in
particular, the logical segmentation of the user data held
in the group (that is, it holds entries indicative of each
record boundary and separator mark in the group). The
access entries proceed in order of the contents of the
group.

Referring to Figure 3, the entries in the block access
table each comprise a FLAG entry indicating the type of the
entry and a COUNT entry indicating its value. ' The FLAG
field is 8 bits and the COUNT field is 24 bits. The bits in
the FLAG field have the following significance:

SKP - A SKIP bit which, when set, indicates
a "skip entry". A skip entry gives the
number of bytes in the group which is
not taken up by user data ie. the
size of the group minus the size of the
user data area.

XFR - A DATA TRANSFER bit which, when set,
indicates the writing to tape of user
data.

EOX -~ - An END OF DATA TRANSFER bit. th.ch, when -

set, ;ndlqates.thevend,pf wrltlng a
user data record to tape.

WO 91/10998 . ' . PCT/GB91/00082

10

15

20

25

30

- 35

16
CMP = _ A COMPRESSION bit which, when set,
'~ indicates that the entry relates to
compressed data.) :

EOT . - The value of this bit does not matter
' for the purposes of this description.
MRK - A SEPARATOR MARK bit which, when set,

indicates that the entry relates to a
separator mark rather than to a data
record.

BOR - A BEGINNING OF RECORD bit which, when
set, indicates the location of the
beginning of a data record.

EOR - An END OF RECORD bit which, when set,
indicates the location of the end of a
data record on tape.

Figure 3 illustrates the seven types of entry which
can be made in the block access table. The SEPARATOR MARK
entry has the BOR and EOR bit set because it is defined as
a record. The next four entries each have the XFR bit set
because they represent information about data transfers.
The START PART OF RECORD entry relates to a case where only
the beginning of a record fits into the group and the next
part of the record runs over to the following group. The
only bit set in the MIDDLE PART OF RECORD entry flag is the
data transfer bit because there will not be a beginning or
end of a record in that group. The END PART OF RECORD entry
does not have the EOR bit set in the FLAG - instead, the EOR
bit is set in the TOTAL COUNT entry which gives the total
record byte count. The last entry in the block access table
for a group is always a SKIP entry which gives the amount of
space in the group which is not taken up by user data ie.
the entry in the Count field for the SKIP entry equals the
group size (eg. 126632 hytes) mlnus the data area size.

" An example of a block access table for the- group '3 of

’records shown- in Figure 1 (c) is shown in Figure 4. The.

count entrles for records R1-8 are -the full byte counts for

WO 91/10998

10

15

20

25

30

35

PCT/GB91/00082

17

those records whereas the count entry for record R9 is the
byte count.of the part- of R9 which is in the group 3. .The

count entries for the file marks FM will be 0 or 1 according ...

to the format. The count entry for the SKIP entry is 126632
minus the sum of the byte counts appearing previously in the
table (not including Total Count entries).

In another embodiment there is a further possible
entry in the block access table which signifies the
algorithm used to compress the data in the group as shown in
Figure 3A. The algorithm number which is entered in the
COUNT field is preferably one which conforms to a standard
for DC algorithm numbers. The data transfer and total count
FLAG entries for compressed records in the group have the
CMP bit set. Thus compressed and uncompressed records in a
group can be distinguished by a drive on the basis of the
CMP bit. For example, if we suppose that in Figure 1 (c),
the even~numbered records are compressed records and the
odd-numbered records are uncompressed, the block access
table entries would be as shown in Figure 4A. In Fiqure 4A,
UBCX indicates an uncompressed byte count for record X and
CBCX indicates a compressed byte count for record X.

Fig 5 shows another possible organisation for storing
user data and related information on tape. Again, the user
data is organised into fixed size groups each group
including an index (which is uncompressed even if the group
contains compressed data) comprising a block access table
for containing information about the contents of the group.
The boundaries between groups may be indicated by fixed
frequency bursts.

However, rather than storing information in the group
index solely in terms of records, this embodiment involves
storing the information about the contents of the group in
terms of "Entities"™, where an entity comprises one or more
records. ‘In this embodiment, an entity can contain n
compressed records each having the same uncompressed length,

‘where n is equal to or greater than .1.

WOol/i0998 ' PCT/GB91/00082

10

15

20

25

30

. 35

18

In Figure 5, a group G comprises a single entity
ENTITY 1 (or E,) which comprises four complete reeords CR, -
CR, of compressed data and a header portlon H of 8 bytes.
The records CR, - CR, have the same uncompressed length but
may well be of different length after undergoing data
compression.

The header portion H, which remains unconmpressed, in
the datastream contains the following information:

H - The header length (4 bits). (The next 12
bits are reserved).

ALGH - A recognised number denoting the compression
algorithm being used to compress data (1
byte).

UBC - The uncompressed byte count for the records

in the entity (3 bytes).

#RECS - The number of records in the entity (2

bytes).

Optionally, an entity may include trailer portions at
the end of each of the records in the entity, the trailer
portions containing the compressed byte count of each
record. Thus the trailer would occur immediately after an
"end of record" (EOR) codeword. If this feature is present,
the 1length of the trailer e.g. 3 bytes, could also be
indicated in the header portion, in the 12 bits reserved
after the header length H .

An example of an embodiment in which each record in an
entity has a trailer portion is shown in Figure 5A. The
trailer portion is inserted into the datastrean,
uncompressed, at the end of each compressed record. Thus
the entity in Figure 5A comprises a header portion H and
four compressed records CRy - CR, of equal length when
uncompressed, each of which has an uncompressed trailer
portion T.

The traller portlon ‘T .of .each record contalns the
compressed byte count (CBC) of the record and. a cycllc
redundancy check (CRC). The trailer occupies 6 bits at the

PCT/GB91/00082

WO 91/10998

10

15

20

25

30

35

19

end of each record in this example. The length (T,) of the
trailer is included in the heaqér portion H and occupies .the

"last four bits éf the first byte of the header portion H. -

The inclusion of trailer portions does not alter the
nature of the entries in the block access table 13 although
the SKIP count entry will accordingly be smaller.

Insertion of compressed byte counts in the datastreanm
has the advantage that a DC drive or a suitably configured
non-DC drive can use these as pointers in a linked list to
deduce where each compressed record begins and ends.

The use of both EOR codewords and CBC's in a DC-drive
provides redundancy which can be utilised for error-checking
purposes during decompression. The decompressor can signal
an error if the CBC and the number of bytes which it

'decompréssed do not match.

An advantage of including the length of the header
portion (and the trailer portion if appropriate) in the
header is that it enables this length to be varied whilst
still allowing a drive to skip over the header if desired.

Information is recorded in a block access table T in
the index of each group in terms of entities rather than in
terms of records but otherwise as previously-described with
reference to Figures 2 -~ 4. The entries in the block access
table for the entity E,, are also shown in Figure 5.

The types of entries which are made in the block
access table T are similar to those described with reference
to Figure 2 - 4. The difference is that, now setting of the
CMP bit in the FLAG field indicates that the entry relates
to a byte count for an entity rather than for a record.

One possibility is to allow entities to contain only
compressed records and this is preferred. This then means
that the setting of the CMP bit in the FrAG field sfill
indicates that the COUNT entry is a compressed byte count.
However, another possibllity is to allow entities to contain
elther compressed ‘data or uncompressed data and to reserve

“a partlcular algorlthm number eg. all zeros, to indicate

that the data in an entity is uncompressed.

WO 91/10998 : PCT/GB91/00082

10

15

20

25

30

35

20

Storing information in the block access table T in
tefms of entities rather than records reduces the storage
management overhead’ assoc1ated with writing and readlng the
records to and from tape. Whereas, using the scheme shown
in Fiqures 2 to 4, five entries in the block access table
would be required for the group G, only two entries are now
needed.

The organisation of records into entities facilitates
the transfer of multiple records of identical uncompressed
size because it reduces the degree of processor intervention
which is required during reading and writing. To write a
sequence of records contained in an entity only requires
processor intervention to form the header portion and to
make the appropriate entry in the block access table. In
contrast, using the known scheme described with reference
to Figures 1 to 4 requires processor intervention on a per
record basis. This is especially important with data
compression, since the compressed byte count is unknown
until after the compression process has finished. Thus,
when trying to fill up a group with data, the number of
records (and corresponding block access table entries) that
will fit is unknown. By fixing the block access table
requirements at one entry no matter how many records worth
of data fit into the group, the entire group may be filled
up with a single processor intervention. Similar advantages
are afforded when reading data.

With reference to Figure 6, an entity (E,) may spread
over more than one group eg. an entity E, containing a
single, relatively long record CR, fills group G, and runs
over into group G,. The entries in the block access tables
T,, T, of the groups G,, G, are also shown in Figure 6. To
reduce the degree of linkage between groups, a new entity is
started as soon as possible in a group ie. at the start of
the group or at the beginning of the first compressed record

in the group if the prev:Lous record is uncompressed or at .

the beginning of the first new compressed record if the

'previous record is compressed and has run over from the

[{]

PCT/GB91/00082

WO 91/10998

10

15

20

25

30

35

21

previous group. Therefore, at the end of compressed record
CR,, the next entity, E, begins. Entity E, contains four

- compressed records CR, to CR, of equal uncompressed length.

It is envisaged that groups may contain a mixture of
entities containing compressed data and "naked records"
containing uncompressed data. An example of this
arrangement is shown in Figure 7 which also shows the
corresponding entries in the block access table.

A group G contains an entity comprising a header
portion H and three compressed records CR;, CR, and CR;. The
group G also comprises an uncompressed record R, (which has
no header portion). The block access table T of the group
G contains four entries:

the first entry is the full byte count of the entity

in the group;

the second entry is a file mark entry (which indicates

the presence of a file mark in the incoming data

before the start of record R)):

the third entry is the full byte count of the

uncompressed record R,;

the last entry is a SKIP entry.

It will be noted from Figure 7 that the CMP bit (the
fourth bit of the FLAG field) is set for the entity byte
count entry but not for the naked record byte count entry.

A suitably configured non-DC drive can identify compressed
and uncompressed data on a tape having a mixture of such
data by checking whether the CMP bit is set in the relevant
block access table entries. .

In this scheme, no separator marks are allowed within
an entity. For example, if a host is sending a sequence of
equal length records to a DC tape drive and there is a file
mark or other separator mark within that sequence, then the
first set of records before the separator mark will be
placed in one entity, the separator mark will be written to
tape and the set of records in the .sequence which follow the
file ';nairk will be placed in a .second entity.- The
corresponding entries for the two entities and the separator

WO 91/10998 PCT/GB91/00082

10

15

20

25

30

. 35

22

mark will of course be made in the block access table of the
relevant group (assuming that only one group.is 1nvolved 1n

" this example)

The possible valid sequences of entrles in the block
access table of a group are illustrated in Fiqure 8. 1In
Figure 8, states and actions are designated by rectangles
and block access table entries are designated by ellipses.
A 'spanned' record/entity is one which extends over from one
group into another.

To take account of the existence of entities and the
permitted existence of multiple compressed records within an
entity, certain fields in the group information table in the
index of each group are defined as follows:

Record Count - this field is a 4-byte field which
specifies the sum of the values of the Number of Records in
Current Group entry (see below) of the group information
table of all groups up to and including the current group.

Number of Records in Current Group - this field is a
2-byte field which specifies the sum of the following:

i) the number of Separator Mark entries in the block
access table of the current group.

ii) the number of Total Count of uncompressed record
entries in the block access table of the current group.
iii) the number of Full Count uncompressed record entries
in the block access table of the current group.

iv) the sum of the numbers of compressed records within
all entities for which there is a Total Count of Entity
entry or Full Count of Entity entry in the block access
table of the current group.

V) the number, minus one, of compressed records in the
entity for which there is a Start Part of Entity entry in
the block access table of the current group, if such an
entry exists.

vi) the number of Total Count of Entity entries in the

_block access table of the current group.

Group Number of the Prev1ous Record - this fleld is a
-byte field Wthhv spec1f1es the running number of the

PCT/GB91/00082

WO 91/10998

10

15

20

25

30

. 35

23

highest-numbered previous group in which a separator mark,
an access point or the beglnning of an uncompressed record

"~ occurred. It shall contain all ZERO bits if no such .

previous group exists.
With regard to the organisation of records in fixed

size groups as described with reference to Figures 1 to 8 it
is generally desirable to keep the groups independent from
one another for decompression purposes ie. it is generally
desirable to put a RESET codeword at or near the beginning
of each group. Two main reasons for this are to help reduce
the amount of buffer space which is required in the
controller by decreasing the linkages between groups ie. to
make it less likely to have to store more than one group in
the buffer at any one time. Another reason for putting a
RESET codeword at the beginning of a group is that, when it
is desired selectively to decompress a record in the middle
of a group it is not necessary to go outside the group to
start the relevant dictionary. _

There are advantages in placing a FLUSH codeword after
each record - the FLUSH codeword is also called the "end of
record" (EOR) codeword so as to improve the access to
compressed data. This feature enables records to be
decompressed individually, subject to the need to decompress
from the RESET codeword which precedes the record. Having
a FLUSH codeword at the end of each record means that the
data for each record can be decompressed without running
into the data from the next record.

The amount of compressed data which makes up a data
dictionary is termed a "compression object®. A compression
object may encompass more than one group of data as
illustrated in Figure 9. Where a record overlaps from one
group to the next, a RESET codeword is placed in the data
stream at the beginning of the very next compressed record.

In Figure 9 a Group G,comprises three full compressed
records CR,, CR,,r CR; and the first part of. a fourth‘

_ compressed record CR,. The last part of record CR, extends

WO 91/10998 PCT/GB91/00082

10

15

20

25

30

" 35

24

into the next group G,. The records are not organised into

_entities in this example.

'During data compression, the dictionary is reset
(indicated by R in Figure 9) at the beginning of group G,.
FLUSH codewords (indicated by F) are inserted into the
datastream at the end of each record. The current
dictionary continues until record CR, ends at which time the
dictionary is reset. Thus the current compression object
comprises records CR, - CR,.

If it is later desired selectively to decompress, say,
record CR;, this can be achieved by beginning decompression
at the start of record CR; ie. the start of the compression
object containing record CR;, and decompressing data until
the end of record CR;. A 'clean break' at the end of record
CR; can be achieved ie. without running over into the start
of record CR, due to the FLUSH codeword at the end of record
CR;.

Thus, providing FLUSH codewords which are accessible
by the format interspersed between 'access points' (RESET
codewords accessible by the format) enables selective
decompression of segments of data which are smaller than the
amount of data used to build a dictionary during data
compression. The FLUSH codewords at the end of records are
accessible since the compressed byte counts for each record
are stored in the block access table.

In the format, the start of a compression object which
forms an 'access point' ie. a point at which the drive can
start a decompression operation, may be denoted in one of
several ways. Access points may be explicitiy noted in the
block access table of each group. Alternatively, the
presence of an access point may be implied by another entry
in the block access table eg. the very presence of an
algorithm number entry may imply an access point at the
beginning of the .first new record in that group.

Alternatively, a bit 1n the algorlthm number may be reserved)

to indicate that a new dictionary starts at the beglnm.ng of
the first new record in that group.

»

WO 91/10998

10

15

20

25

30

- 35.

PCT/GB91/00082

25

When records are organised into entities and entities
are organised- into groups as described with reference to
Figures 5 to 7, a .compression objég:t may encompass more than.
one entity as illustrated in Figure 10, so as to obtain the
advantage of dictionary sharing over entities which contain
relatively small amounts of data.

Figure 10 shows three fixed size groups G,, G,, G; of
compressed data. Group G, contains full record CR, and the
first part of the next record CR,. Record CR; is the only
record in entity E,. Group G, contains the middle part of
record CR,. Group Gy contains the end part of record CR, and
contains further records CR; etc. Entity E, contains a
single, relatively long record CR,.

During compression, the dictionary is reset (denoted
by R) at the beginning of group G, but, since record CR, is
relatively small, the compression object continues beyond
record CR, and entity E, and includes record CR, and entity
E,. A compression 6bject ends at the end of record CR, and
a new one begins at the beginning of record CR;.

A further possibility is for the presence of a non-
zero algorithm number in an entity header to indicate the
start of a new dictionary and otherwise for the algorithm
number header entry to take a predetermined value eg. zero.

The presence of a FLUSH codeword at the end of each
entity which is accessible owing to writing the compressed
byte count of the entity in the block access table enables
selective decompression of records on a per entity basis.
For example, referring to Figure 10, the contents of entity
E, (which happen to be a single record CR, in this example)
could be decompressed without obtaining data from the
beginning of record CR;. However, decompression must
commence from the RESET codeword at the beginning of entity
E, which is the nearest previous dictionary start point which
is accessible in the tape format. It is also possible to
decoinpr.ess data on a per re'c'br.'d‘baisi's utilising i-._n'fo.rma-tion-‘
in the ‘éntity header as vll.il.l be described with refé_rgnce to
Figures 20A and 20B. '

WO 91/10998 PCT/GB91/00082

10

15

20

25

30

35

26

It should be apprec1ated that the DC ch1p 1nserts

" RESET codewords into the datastream in an algorlthm-

dependent manner - even in the middle of records. The above
description relates to the RESET codewords which are forced,
recognised and utilised by the tape format.

To clarify, in Figures 5 to 10 the entities and
compression objects do not include the indices of any
relevant group.

A tape format for helical-scan implementation of the
present invention will now be described.

The storage method and apparatus described hereinafter
utilises a helical-scan technique for storing data in a
format similar to that used for the storage of PCM audio
data according to the DAT Conference Standard (March 1988,
Electronic Industries Association of Japan, Tokyo, Japan) .
The present method and apparatus is, however, adapted for
storing computer data rather than digitised audio
information.

Figure 11 shows the basic layout of a helical-scan
tape deck 11 in which tape 10 from a tape cartridge 17
passes at a predetermined angle across a rotary head drum 12
with a wrap angle of 90°. 1In operation, the tape 10 is moved
in the direction indicated by arrow T from a supply reel 13
to a take-up reel 14 by rotation of a capstan 15 against
which the tape is pressed by a pinch roller 16; at the same
time, the head drum is rotated in the sense indicated by
arrow R. The head drum 12 houses two read/write heads HA,
HB angularly spaced by 180°. 1In known manner, these heads
HA, HB are arranged to write overlapping oblique tracks 20,
21 respectively across the tape 10 as shown in Figure 12.
The track written by head HA has a positive azimuth while
that written by head HB has a negative azimuth. Each pair
of positive and negatlve azxmuth tracks, 20, 21 constitutes
a frame.)

The ba51c format of each track as arranged to be
written by the present apparatus is illustrated in Figure

PCT/GB91/00082

WO 91/10998

10

15

20

25

30

. 35

27

12, Each track comprises two marginal areas 22, two sﬁb
aréas'23 two ATF (Automatlc Track Follow1ng) areas 24, and
a main area 25. The ATF areas 24 provide signals enabling-
the heads HA, HB to accurately follow the tracks in known:
manner. The main area 25 is used primarily to store the
data provided to the apparatus (user data) although certain
auxiliary information is also stored in this area; the sub
areas 23 are primarily used to store further auxiliary
information. The items of auxiliary information stored in
the main and sub areas are known as sub codes and relate for
example, to the logical organisation of the user data, its
mapping onto the tape, certain recording parameters (such as
format identity, tape parameters etc), and tape usage
history.

A more detailed description of the main area 25 and
sub areas 23 will now be given including details as to block
size that are compatible with the aforementioned DAT
Conference Standard.

The data format of the main area 25 of a track is
illustrated in Figure 13. The main area is composed of 130
blocks each thirty six bytes long. The first two blocks 26
are pre-ambles which contain timing data patterns to
facilitate timing synchronisation on playback. The
remaining 128 blocks 27 make up the 'Main Data Area'. Each
block 27 of the Main Data Area comprises a four-byte 'Main
ID' region 28 and a thirty-two byte 'Main Data' region 29,
the compositions of which are shown in the lower part of
Pigure 13.

The main ID region 28 is composed of a sync byte, two
information-containing bytes W1, W2 and a parity byte. Byte
W2 is used for storing information relating to the block as
a whole (type and address) while byte W1 is used for storing
sub codes.

The Main Data region 29 of each block 27 is composed
of thirty two ‘bytes'_generallyA.conétitutéd "by user-data - -
and/or user-data parity. However, it is also possible to
store sub codes in the Main Data region if desired.

WO 91/10998 PCT/GB91/00082

10

15

20

25

30

35

28

The data format of each sub area 23 of a track is

illustrated . iﬁ Figure'14; the sub area is composed of

eleven blocks each thlrty—six bytes long. the flrst tvo
blocks 30 are pre-ambles while the last hlock 31 is a post-
amble. The remaining eight blocks 32 make up the "Sub Data
Area". Each block 32 comprises a four-byte 'Sub ID' region
33 and a thirty-two byte ‘'Sub Data' region 34, the
compositions of which are shown in the lower part of Figure
14.

The Sub ID region 33 is composed of a sync byte, two
information-containing bytes SW1, SW2 and a parity byte.
Byte SW2 is used for storing information relating to the
block as a whole (type and address) and the arrangement of
the Sub Data region 34. Byte SWl1 is used for storing sub
codes.

The Sub Data region 34 of each block 32 is composed of
thirty two bytes arranged into four eight-byte "packs" 35.
These packs 35 are used for storing sub codes with the types
of sub code stored being indicated by a pack-type label that
occupies the first half byte of each pack. The fourth pack
35 of every even block may be set to zero or is otherwise
the same as the third pack while the fourth pack of every
odd block is used to store parity check data for the first
three packs both of that block and of the preceding block.

In summary, user data is stored in the Main Data
regions 29 of the Main Data Area blocks 27 of each track
while sub codes can be stored both in the Sub ID and Sub
Data regions 33, 34 of Sub Data Area blocks 32 and in the
Main ID and Main Data regions 28, 29 of Main Data Area
blocks 27.

For the purposes of the present description, the sub
codes of interest are an Area ID sub code used to identify
the tape area to which particular tracks belong, and a
number of sub codes used for storing counts of records and
separator marks. The area ID sub code 1s a four-blt code

i stored ‘in three locatlons. Firstly, it is. stored in the

third and fourth packs 35 of the Sub Data region 34 of every

13

PCT/GB91/00082

WO 91/10998

10

15

20

25

30

35

29
block in the Sub Data Areas of a track. Secondly, it is
stored in byte SW1 of the Sub ID region 33 of every even Sub

‘Data Area -block 32 in a ‘track, starting with the first

block. The tapé areas identified by this sub code will be
described later on with reference to Figure 15.

The sub codes used to store record and separator mark
counts are stored in the first two packs 35 of the Sub Data
region 34 of every block in the sub Data Areas of each track
within the Data Area of the tape (see later with reference
to Figure 15). These counts are cumulative counts which are
the same as the counts in the group information table as
previously described. These counts are used for fast
searching the tape and to facilitate this process are
constant over a set of frames constituting a group, the
counts recorded in the tracks of a group of frames being the
counts applicable as of the end of the group.

The general organisation of frames along the tape as
implemented by the present storage method and apparatus will
be considered next. Thus, referring to Figure 15, the tape
can be seen to be oréanised into three main areas, namely a
lead-in area 36, a data area 37 and an end-of-data (EOD)
area 38. The ends of the tape are referenced BOM (beginning
of media) and EOM (end of media). User data is recorded in
the frames of data area 37. The lead-in area 36 includes an
area between a beginning-of-recording BOR mark and the data
area 37 where system information is stored. The Area ID sub
code enables the system area, data area 37 and EOD area 38
to be distinguished from one another.

The frames 48 of the data area are arranged in groups
39 each of a fixed number of frames (for example, twenty
two) ; optionally, these groups are separated from each other
by one or more amble frames of predetermined content. 1In
terms of organisation of user data records, these groups 39
correspond to the group 3 described with reference to Figure
1(c).. Thus, thé~§1acement‘bf.user,data.into such gréups.39
has no relation to the ;ogiéé; segmentatiph of the user. data

" and information relating to this segmentation (record marks,

WO 91/10998 : PCT/GB91/00082

10

15

20

25

30

35

30

separator marks) is stored in an index 40 that terminates
the user-data in a group (the index actually occupies. user
data space w1th1n the group) . Note that although_the index
is shown in Figure 15 as occupying the final portion of the
last frame of the group, this is only correct in relation to
the arrangement of data prior to a byte-interleaving
operation that is normally effected before data is recorded
on tape; however, for present purposes, the interleaving
operation can be disregarded.

In practice,the information in the index is physically
dispersed within the main data areas of the tracks in the
group.

The contents of the index 4 are shown in Figure 2 and,
as previously described, the index comprises two main data
structures, namely a group information table and a block
access table. The group information table is stored in a
fixed location at the end of the group and is the same size
independent of the contents of the group. In contrast, the
block access table varies in size depending on the contents
of the group and extends from the group information table
backwards into the remainder of the user data area of the
frames of the group. Entries are made in the block access
table from the group information table backwards to the
boundary with real user data or ‘'pad’.

Also shown in Figure 15 are the contents of a sub data
area block 32 of a track within a data-area group 39. As
previously noted, the first two packs contain a separator
mark count, the second pack 35 also contains record counts
RC (as defined above), and the third pack 35 contains the
Area ID and an absolute frame count AFC. For all the tracks
in a group, the counts FMC, and RC held in the sub data area
blocks are the same as those held in the group information
table 41 of the group index 40.

Figure 16 is a block &iagram of the storage apparatus
for compress1ng and- recording - user data in accordance w1th

‘the above-descrlbed tape format. The apparatus includes the

tape deck 11 already described in part with reference to

w

oy

WO 91/10998

10

15

20

25

30

35

PCT/GB91/00082

31

Figure 11. In addition to the tape deck, the apparatus

_1nc1udes an interface unlt 50 for 1nterfac1ng the apparatus
with a host computer (not shown) via a bus 55; .a group

processor 51 comprising a data compression processor (DCP)
and a frame data processor 52 for processing user-record
data and separation data into and out of Main Data Area and
Sub Data Area blocks 27 and 32; a signal organiser 53 for
composing/decomposing the signals for writing/reading a
track and for appropriately switching the two heads HA, HB:
and a system controller 54 for controlling the operation of
the apparatus in response to commands received from a
computer via the interface unit 50. Each of the main
component units of the apparatus will be further described
below. ’

Firstly, the structure and operation of the data
compression processor (DCP) or data compression engine will

be described.
With reference to Figure 17 the heart of the engine is

a VLSI data compression chip (DC chip) which can perform

both compression and decompression on the data presented to
it. However, only one of the two processes (compression or
decompression) can be performed at any one time. Two first-
in, first-out (FIFO) memories are located at the input and
the output of the DC chip to smooth out the rate of data
flow through the chip. The data rate through the chip is
not constant, since some data patterns will take more clock
cycles per byte to process than other patterns. The
instantaneous data rate depends upon the current compression
ratio and the frequency of dictionary entry collisions, both
of which are dependent upon the current data and the entire
sequence of data since the last dictionary RESET. The third
section of the subsystem is a bank of static RAM forming an
external dictionary memory (EDM) that is used for local
storage of the current dictionary entries. These entries

_conta:.n characters, codeword po:tnters, and -control flags. .

Fig 18 shows a block diagram of _the Dc 1ntegrated
circuit. The DC chip is divided into three blocks; the

WO 91/10998 | 4 - PCT/GB91/00082

10

15

20

25

30

35

32

input/output converter (I0C), the compression and
decompression- c,onvetter; (CDC), and the microprocessor

- interface (MPI)."

The MPI section provideé facilities for controlling
and observing the DC chip. It contains six control
registers, eight status registers, two 20 bit input and
output byte counters, and a programmable. automatic
dictionary reset circuit. The control and status registers
are accessed through a general~-purpose 8 bit microprocessor
interface bus. The control registers are used to enable and
disable various chip features and to place the chip into
different operating modes (compression, decompression, pass
through, or monitor). The status registers access the 20
bit counters and various status flags within the chip.

It has been found that compression ratios can be
improved by resetting the dictionary fairly frequently.
This is especially true if the data stream being compressed
contains very few similar byte strings. Frequent dictionary
resets provide two important advantages. First, resetting
the dictionary forces the codeword length to return to 9
bits. Second, new dictionary entries can be made that
reflect the present stream of data (a form of adaption).
The DC chip's interface section contains circuitry that
dynamically monitors the compression ratio and automatically
resets the dictionary when appropriate. Most data
compression algorithms will expand their output if there is
little or no redundancy in the data.

The IOC section manages the process of converting
between a byte stream and a stream of variable-length
codewords (ranging from 9 bits to 12 bits). Two of the
eight reserved codewords are used exclusively by the IOC.
One of these codewords is used to tell the IOC that the
length of the codewords must be incremented by one. Thus,
the process of incrementing codeword size is decoupled from
the CDC section - the IOC operates as an independent

pipeline process, thus allowing the c©DC .to perform

WO 91/10998

10

15

20

25

30

- 35

the IOC..

PCT/GB91/00082

33

compression or decompression without being slowed down by

The ée’cbvnd reserved codeword _which is. _thé-_l_?LtJ'.SH- (or..
tend of record' (EOR)) codeword alerts the IOC that the
next codeword is the last one associated with the current
packet of data ie. the FLUSH codeword is actually the
penultimate one of a compressed record. = From this
information, the IOC knows to finish its packing routine and
end on a byte boundary. This feature allows compression of
multiple input packets into one contiguous output packet
while maintaining the ability to decompress this packet into
its constituent packets. The JIOC is also capable of
allowing data to pass straight through from input to output
without altering it, and of allowing data to pass through
while monitoring the potential compression ratio of the
data. These features .can be used as another 1level of
expansion protection.

The CDC section is the engine that performs the
transformation from uncompressed data to compressed data and
vice versa. This section is composed of control, data path,
and memory elements that are adjusted for maximum data
throughput. The CDC interfaces with the IOC via two 12 bit
buses. During compression, the IOC passes the input bytes
to the CDC section, where they are transformed into
codewords. These codewords are sent to the IOC where they
are packed into bytes and sent out of the chip. Convérsely,
during decompression the IOC converts the input byte stream
into a stream of codewords, then passes these codewords to
the CDC section, where they are transformed into a stream of
bytes and sent to the IOC. The CDC section also interfaces
directly to the external RAM that is used to store the
dictionary entries.

The CDC makes use of _two reserved codewords. The
first is used any time a dictionary reset has taken place.

The occurrence 'of_ this .codeword_cau_s_es.two ac;tions; the. I0C
. .returns to the state in which it.packs .or unpacks-9 bit--

codewords, and the CDC resets the current dictionary and

WO 91/10998 . PCT/GB91/00082

10

15

20

25

30

-35

34

starts to build a new one. Dictionary resets are requested

by the MPI section via mlcroprocessor control or the
-automatlc reset clrcultry. The second reserved codeword is

generated during compression any time the CDC runs out of
usable external RAM while trying to build a new dictionary
entry. This event very rarely happens, given sufficient
external RAM. However, as the amount of memory decreases,
it is more 1likely that the CDC will encounter too many
dictionary collisions and will not be able to build new
dictionary entries. With the reduction of external memory
and the inevitable increase in dictionary collisions, the
data throughput and compression performance will be slightly
degraded. This "full dictionary" codeword is also used
during decompression by the CDC to ensure that the
decompression process stops building dictionary entries at
the same point as the compression process.

Returning now to Figure 16 the data storage apparatus
is arranged to respond to commands from a computer to
load/unload a tape, to store a data record or separation
mark, to enable compression of data, to search for selected
separation marks or records, and to read back the next
record.

The interface unit 50 is arranged to receive the
commands from the computer and to manage the transfer of
data records and separation marks between the apparatus and
computer. Upon receiving a command from the computer, the
unit 50 passes it on to the system controller 54 which, in
due course, will send a response back to the computer via
the unit 50 indicating compliance or otherwise with the
original command. Once the apparatus has been set up by the
system controller 54 in response to a command from the
computer to store or read data, then the interface unit 50
will also control the passage of records and separation
marks between the computer and group processor 51.

Durlng data storage the group processor 51 is arranged -

to compress the user-data if required and to organise the
user-data that is prov1ded to it in the form of data

‘»

WO 91/10998

10

15

20

25

30

35

PCT/GB91/00082

35

records, into data packages each corresponding to a group of
data. The processor 51 1s also arranged to construct the

"index for each group and the correspondlng sub codes._

During reading, the group processor effects a reverse
process enabling data records and separation marks to be
recovered from a group read from tape prior to
decompression.

The form of the group processor 51 is shown in Figure
19. At the heart of the group processor'51 is a buffer 56
which'is arranged to hold more than one (for example, two)
group's worth of data. The allocation of buffer space to
incoming and outgoing data is controlled by a buffer space
manager 57. The processor 51 communicates with the
interface 50 via a first interface manager 58 and with the
frame data processor 52 via a second interface manager 59.
Overall control of the grouping process is effected by a
grouping manager 60 which also generates the group indices
and- associated codes during recording (functional block 61)
and interprets these indices and sub codes during reading
(functional block 62). The grouping manager 60 is arranged
to exchange coordination signals with the system controller
54.

The DC processor DCP is operable to compréss data for
storage on tape or to decompress data to be read by a host.
There are interconnections between the DC processor DCP and
the interface manager 58, the buffer 56, the buffer space
manager 57 and the grouping manager 60 for the interchange
of control signals.

The grouping manager 60 also comprises an entity
manager - (EM) which organises compressed data into entities
and generates header portions for the entities. The
grouping manager 60 and the buffer space manager 57 are

' control components and data for wr;tlng to tape does not

pass through them, but rather passes directly from the

buffer 56 to the interface manager 59.

WO 91/10998 ' - PCT/GB91/00082

10

15

20

25

30

- 35

36

During recording when the host is ready to pass a data
record, the interface 50 :asks the buffer space hanager 57

-(via the 1nterface manager 58) whether the processor 51 is .

ready to receive the record. The buffer space manager 57
may initially send a ‘'wait’ reply but, in due course,
enables the transfer of the data record from the host to the
buffer 56.

If the data is to be compressed (according to control
signals from the system controller 54), the DC processor DCP
substitutes codewords for a proportion of the data in the
record in accordance with a data compress;on algorithm as
previously described.

Typically, a host transfers records one at a time
although multiple record transfers make sense for shorter
records.

The grouping manager 60 is connected to the buffer
space manager 57 and tells the buffer space manager 57 how
much more data the group can take before it runs into the
index area of the group. The buffer space manager 57
notifies the grouping manager 60 whenever the maximum number
of bytes has been transferred into the current group or the
last byte from the host has been received.

If a transfer from the host cannot all fit inside a
group, it is said to "span" the group boundary. The first
part of the transfer goes into one group and the rest into
subsequent groups. The buffer space manager 57 tells the
grouping manager 60 if the host tries to supply more data
than will fit in the current group being built. If no span
occurs, the group index is updated and the grouping manager
60 waits for another write command. If a span occurs, the
index of the current group is updated and that group is
available for writing to tape. The next group is begun and
the data from the host goes directly into the beginning of
that new group.

. The record will be transferred to. a buffer location
that corresponds to the eventual positioning of the record
data within the group of which it is to form a part.

¢

WO 91/10998

10

15

20

25

30

35

PCT/GB91/00082

37

Iriformation on the size of the record is passed to the
grouping manager 60.. . When the host sends a separator
1ndlcatlon this 1s also routed to the grouplng manager 60.
The grouping manager keeps track of the separator mark and
record counts from BOR and uses this information in the
construction of the index and separation-count and record
count sub codes of a group. The index is constructed in a
location in the buffer appropriate to its position at the
end of a group.

In parallel, the entity manager EM generates an entity
header portion for the current entity which will contain the
compressed record data. The header portion is not
compressed. Likewise, the entity manager EM may generate
trailer portions (also uncompressed) for each record.

The entity manager EM is responsible for ensuring that
the rules governing entity formation are observed. These
are:- ‘

a) Start a new entity:
i) as soon as possible after the beginning of a
group:;
ii) when the uncompressed size of records being sent
from the host changes;
iii) when the compression algorithm changes, and

(Regarding i) and iii) above, the need for an access
point requires starting a new entity and an appropriate
signal is sent to the data compression processor DCP from
the grouping manager 60.)

b) End an entity:
i) when an uncompressed record: requires to be
stored;
ii) when a separation mark requires to be stored.
The formation of each entity triggers a BAT entry.

When a group becomes full, the processes of data
conpression and entity building halt until ‘a new group is -

1n1t1ated.

WO 91/10998 ' o R PCT/GB91/00082

10

15

20

25

30

35,

38

If incoming data is not to be compressed, the data

passes unchanged throﬁgh'the DC’proCessor,DCP and the entity
manager EM ié'inactivg. Uncompressed records are organised. ..

directly into groups without forming part of an entity and
information regarding the records is put into the group
index. Uncompressed records do not have a header portion
created for them.

Once a group (including its index and sub codes) has
been assembled, it is transferred to the frame data
processor 52 for organisation into the blocks making up the
main data areas and sub data areas of twenty two successive
frames. Information about frame ID is in the datastream.
There is a continuous stream of data between the group
processor 52 to a small buffer in the frame data processor
52 which is able to store three frame's worth of data.

As previously mentioned, it may be desirable to insert
one or more amble frames between groups of frames recorded
on the tape. This can be done by arranging for the frame
data processor 52 to generate such amble frames either upon
instruction from the group processor 51 or automatically at
the end of a group if the processor 52 is aware of group
structure.

By sizing the buffer 56 such that it can hold two
group's worth of data, the general operation of the
processor 51 can be kept as straight forward as possible
with one group being read in and one group being processed
and output. During writing, one group is being built with
data from a host and one is being written to tape.

When data is being read from tape,the group processor
51 is arranged to receive user-data and sub-codes on a
frame-by-frame basis from the frame data processor 52, the
data being written into the buffer 56 in such a manner as to
build up a group. The group processor 51 can then access
the group index to recover information on the logical
organisation (fecord/entity strdcture, separatqf marks) .of

' the user-data in the group and an indication of whether the

data is compressed.

o>

WO 91/10998

PCT/GB91/00082

39

If the data is uncompressed, or the data is compressed)
but is to be read back.to the host in its compressed -form -

. for software decompre551on, the group processor 51 can pass

10

15

20

25

30

35

a requested record or separator mark to the host via the
interface 50 in which case the data passes through the DC
processor DCP unchanged. The entity header portions in
compressed data are passed back to a host by a non-DC drive
for use by the host.

If the data is compressed and is to be decompressed,
the data is decompressed by the DC processor DCP in the
manner described above before being passed to the host.

The header portions from each entity are utilised by

" a DC drive but are not passed to the DC processor DCP. The

algorithm number in the header portion is checked for
consistency with the algorithm used by the DC processor DCP.
Further, the number of compressed records in the entity is
obtained from the header portion enabling a record count
down to be performed as the entity data is passed to the DC
processor DCP.

To facilitate the assembly of frame data back into a
group's worth of data, each frame can be tagged with an in-
group sequence number when the frame is written to tape.
This in-group number can be provided as a sub code that, for
example, is included at the head of the main data region of
the first block in the Main Data Area of each track of a
frame. The subcode is used on reading to determine where
the related frame data is placed in the buffer 56 when
passed to the group processor 51.

The frame data processor 52 functionally comprises a
Main-Data-Area (MDA) processor 65, a Sub-Data-Area (SDA)
processor 66, and a sub code unit 67 (in practice, these
functional elements may be constituted by a single
microprocessor running appropriate processes).

The sub code unit 67.1is arranged to provide subcodes
to the processors 65 and 66 as requlred during wrlting and

"to receive and dlstrlbute sub codes from the processors 65,

66 during readlng. Depending on their information contents,

WO 91/10998 : . ' PCT/GB91/00082

10

15

20

25

30

35

40

sub codes may be generated/required by the group processor
51 or the system controller 54, ‘the separatlon mark count

.sub codes are, for example, determlned/used by the group-

processor 51 while the Area ID sub codes are determined/used
by the controller 54. 1In the case of non-varying sub codes
such as certain writing parameters, the sub codes may be
permanently stored in the unit 67. Furthermore, any frame-
dependent sub codes may conveniently be generated by the sub
code unit 67 itself.

The MDA processor 65 is arranged to process a frame's
worth of user data at a time together with any relevant sub
codes. Thus during recording, the processor 65 receives a
frame's worth of user-data from the group processor 51
together with sub codes from the unit 67. on receiving the
user-data the processor 65 interleaves the data, and
calculates error correcting codes, before assembling the
resultant data and sub codes to output the Main-Data-Area
blocks for the two tracks making up a frame. In fact before
assembling the user data with the sub codes, scrambling
(randomising) of the data may be effected to ensure a
consistent RF envelope independent of the data contents of
a track signal.

During reading, the processor 65 effects a reverse
process on the two sets of Main-Data-Area blocks associated
with the same frame. Unscrambled, error-corrected and de-
interleaved user data is passed to the group processor 51
and sub codes are separated off and distributed by the unit
67 to the processor 51 or system controller 54 as required.

The operation of the SDA processor 66 is similar to
the processor 65 except that it operates on the sub codes
associated with the sub-data-areas of a track, composing and
decomposing these sub codes into the from Sub-Data-Area
blocks.

The signal organiser 53 comprises a
formatter/separator unit 70 which during recordlng (data
wr1t1ng) is arranged to assemble Maln—Data-Area blocks. and

'Sub—Data-Area blocks prov1ded by the frame data processor 52

“w

WO 91/10998

10

15

20

25

30

.35

PCT/GB91/00082

41

together with ATF signals from an ATF circuit 80, to form
the signal to be recorded on each successive track. The

'necessary pre-amble and post-amble patterns 'are also>

inserted into the track 51gnals ‘where necessary by the unit
70. Timing signals for coordinating the operation of the
unit 70 with rotation of the heads HA, HB are provided by a
timing generator 71 fed with the output of a pulse generator
81 responsive to head drum rotation. The track signals
output on line 72 from the unit 70 are passed alternately to
head HA and head HB via a head switch 73, respective head
drive amplifiers 74, and record/playback switches 75 set to
their record positions. The head switch 73 is operated by
appropriately timed signals from the timing generator 71.
During» playback (data reading) the track signals
alternately generated by the heads HA and HB are fed via the
record/playback switches 75 (now set in their playback
positions), respective read amplifiers 76, a second head
switch 77, and a clock recovery circuit 78 to the input of
the formatter/separator unit 70. The operation of the head
switch 77 is controlled in the same manner as that of the
head switch 73. The unit 70 now serves to separate off the

. ATF signals and feed them to the circuit 80, and to pass the

Main-Data-Area blocks and Sub-Data-Area blocks to the frame
data processor 52. Clock signals are also passed to the
processor 52 from the clock recovery circuit 78.

The switches 75 are controlled by the system
controller 54.

The tape deck 11 comprises four servos, namely a
capstan servo 82 for controlling the rotation of the capstan
15, first and second reel servos 83, 84 for controlling
rotation of the reels 14, 15 respectively, and a drum servo
85 for controlling the rotation of the head drum 12. Each
servo includes a motor M and a rotation detector D both
coupled to the element controlled by the servo. Associated
with the reel servos 83, 84 are means .86 for sensing the
beginnlng-of-medla (BOM) and end%of_medie (EOM) ; these means
86 may for'example-be based on motor current sensing, as the

WO 91/10998 | PCT/GB91/00082

42

motor current of whichever reel is being driven to wind in

tape (dependent on the direction of tape travel) will"

.;1ncrease sxgnlflcantly upon stalllng of the motor at

10

15

20

25

30

35

BOM/EOM.

The tape deck 11 further comprises the automatic track
following circuit 80 for generating ATF signals for recordal
on tape during recording of data. During reading, the ATF
circuit 80 is responsive to the ATF track signal read from
tape to provide an adjustment signal to the capstan servo 82
such that the heads HA, HB are properly aligned with the
tracks recorded on the tape. The tape deck 11 also includes
the pulse generator 81 for generating timing pulses
synchronised to the rotation of the heads HA, HB.

The operation of the tape deck 11 is controlled by a
deck controller 87 which is connected to the servos 82 to 85
and to the BOM/EOM sensing means 86. The controller 87 is
operable to cause the servos to advance the tape, (either at
normal speed or at high speed) through any required
distance. Thls control is effected either by energising the
servos for a time interval appropriate to the tape speed
set, or by feedback of tape displacement information from
one or more of the rotation detectors D associated with the
servos.

The deck controller 87 is itself governed by control
signals issued by the system controller 54. The deck
controller 87 is arranged to output to the controller 54
signals indicative of BOM and EoM being reached.

The system controller 54 serves both to manage high-
level interaction between the computer and storage apparatus
and to coordinate the functioning of the other units of the
storage apparatus in carrying out the basic operations of
Load/Write/Compress/Decompress/Search/Read/Unload;requested
by the computer. 1In this latter respect, the controller 54
serves to coordinate the operation of the deck 11 with the
data processing portlon of the apparatus.

- In controlllng the tape deck 11, the system controller
can request the deck controller 87 to move the tape at the

"

oy

WO 91/10998

10

15

20

25

30

35

PCT/GB91/00082

43

normal read/write speed (Normal) or to move the tape
forwards or backwards at. high speed, that is Fast Forward

- (F.FWD) or Fast Rewind (F.RWD). The deck.controller 87 is

arranged to report arrival of BOM or EOM back to the systen
controller 54.

An operation to locate a record for decompression will
now be described with reference to Figures 20A and 20B.

Upon the host issuing a command to decompress a
record, the controller 54 generates a search key having a
value equal to the record count of the record to be
decompressed. The current record count is held in the
grouping manager 60 of the group processor 51. Next the
tape is advanced (or rewound as appropriate) at high speed
(many times faster than normal) while the head drum is

rotated at a speed to maintain the relative velocity of the

heads HA, HB across the tape at a constant wvalue; in this
mode, it is possible to read the sub area of about one track
in every three hundred (steps 91a and 91b). Reading track
sub areas at speed is a known technique and will therefore
not be described in detail.

Fast forward searching is depicted in Figure 20A and
fast backward searching is depicted in Figure 20B. '

During fast forward searching (Figure 20A), for each
sub area that is successively read, the record count held in
the second pack of each sub data area block is compared by
the controller 54 with the search key (step 92a). If the
record count is less than the search key, the search is
continued; however, if the record count is equal to, or
greater than the search key, fast forward searching is
terminated and the tape is backspaced through a distance
substantially equal to the distance between fast forward
reads (step 93). This ensures that the record count held in
the sub areas of the track now opposite the head drum will
be less than the. search key.

Durlng fast backward Searchlng (Flgure 2OB), for each
sub area that is succe551ve1y read, the record count held in .

'the second pack of each sub data block is compared by the

WO 91/10998 PCT/GB91/00082

10

15

20

25

30

" 35

44

controller 54 with the search key (step 92h) If the record
count is more than the search key, the search 1s contlnued,

’ however, if. the record count is equal to or less than the

search key, the fast rewind is stopped.

Next, for both fast forward and fast backward
searching, the tape is advanced at its normal reading speed
(step 94) ,and each successive group is read off tape in turn
and temporarily stored in the buffer 56 of the group
processor 51. The record count held in the index of each
group is compared with the search key (step 95) until the
count first equals or exceeds the search key. At this
point, reading is stopped as the record searched for is
present in the group in buffer 56 whose record count has
just been tested. If entries are made in the block access
table on a per record basis the block access table of the
index of this group is now examined to identify the record
of interest (step 96) and the address in the buffer of the
first data record byte is calculated (step 97). Thereafter,
the group processor 51 tells the system controller 5S4 that
it has found the searched-for record and is ready to
decompress and read the next data record: this is reported
back to the host by the controller (step 98). The search
operation is now terminated.

It will, of course, be appreciated that other search
methods could be implemented.

In order to detect when the bounds of the data area of
the tape have been exceeded while searching at speed,
whenever a sub area is read the Area ID sub code is checked
by the system controller 54. If this sub code indicated
that the searching has gone beyond the data area of the
tape, then the tape direction is reversed and searching is
resumed, generally at a lower speed. For clarity, this Area
ID check has been omitted from Figures 20A and 20B.

The next step after the record of 1nterest has been
located is to check the algorithm number indicating which

algorlthm was ‘used to compress the data in the record. This--

[0

PCT/GB91/00082

WO 91/10998

10

15

20

25

30

35

45

is done by examining the block access table of the relevant
group if the algorithm number is. stored in that table.

If the_élgorithm number corresponds.to -the algorithm .- -

used by the DC chip in the tape drive (or to one of the DC
chips if there is more than one), the next step is to locate
the beginning of the compression object containing the
record of interest. This may be done in a variety of ways
depending on the particular recording format as described
with reference to Figure 9.

Once the beginning of the compression object
containing the record of interest is found, decompression
commences from that point and continues until the FLUSH (or
EOR) codeword at the end of the record is reached. The
decompressed record can then be passed to the host. The
presence of a FLUSH codeword at the end of the record means
that the record can be decompressed cleanly without
obtaining data from the beginning of the next record.

If compressed records are organised into entities, the
group of interest is located as described earlier with
reference to Figures 20A and 20B. '

The relevant entity can then be located by using the
#RECS entries in the entity headers within the group.
Decompression is started from the nearest previous access
point which may be found by checking the algorithm ID entry
in the relevant entity and, if it indicates that the
compressed data in that entity is a continuation of an
earlier started dictionary, skipping back to the previous
entity header and so on until an access point is found.
Only decompressed data obtained from the relevant record or
records is retained. The existence of data in the entity
headers therefore has the advantage of facilitating finding
relevant records and access points and allows the process of
data management to be decoupled from that of decompression.
If there are trailers provided after each compressed record
in an entity“whibh.ébntaiﬁ the compressed byte count of the
record; these CBCs can be utilised to -advantage :Hih
ascertaining when to start retaining decompfessed data

(>3

WO 91/10998 , PCT/GB91/00082

10

15

20

25

30

- 35

46

rather than (or as well as) counting FLUSH codewords during
decompression. ‘

c_onsecp_;lehtly, ‘the presence of ancillary information in

the data stream can be used to advantage in finding selected
records, the nearest previous access point and in
ascertaining the point at which decompressed data should be
kept.

During normal reading of data, the ancillary
information eg. the error checking information and/or data
separation information in the datastream, is utilised
accordingly. One possibility is for the drive (DC or non-
DC) to generate CRCs and compare these with the CRCs in the
trailer portions of records organised into entities. Also,
the drive (again DC or non-DC) can use the CBCs in the
trailer portions to find out where each compressed record
begins and ends.

It should be appreciated that the present invention is
not limited to helical-scan data recording. The compression
algorithm described is purely an example and the present
invention may also be applicable to the storage of data
which is compressed according to a different algorithm.

U]

‘-

w

PCT/GB91/00082

WO 91/10998

47

- cLATMS

1. A data storage method for writing compressed data
organised in the form of records (CR) to tape (10)
characterised by inserting into the datastream ancillary
information which is extra to the data compression process.

2. A method according to claim 1 wherein the ancillary
information comprises error checking information.

3. A method according to claim 1 or 2 wherein the
ancillary information comprises data separation information.

4. A method according to any preceding claim comprising
writing the ancillary information to tape (10) in

uncompressed form.

5. A method according to any preceding claim comprising
inserting into the datastream ancillary information in

association with one or more records.

6. A method according to claim § comprising inserting
into the datastream a header portion (H) containing
ancillary information relating to one or more records (CR))

following the header portion.

7. A method according to claim 5 or claim 6 comprising
inserting into the datastream a trailer portion (T)
containing ancillary information relating to one or more
records (CR,) preceding the trailer portion.

8. A method according to any preceding claim comp‘i_ising

' organising data records into groups (G,) .:'Lndep_'e'ndently of the
"record structure of the data. and writing information

regarding the records (CR,) in a group to an index (4)
associated with the group. -

SUBSTITUTE SHEET

WO 91/10998 . _ . PCT/GB91/00082

48

9. .A method according. to claim 8 comprising- writing
information to the group indices in terms of entities (E,),
where an entity comprises one or more records (CR,).

10. A method according to claim 9 comprising writing
ancillary information to a header (H) associated with each
entity (E,).

11. A storage device for compressing user data and writing

compressed data to tape (10) which is operable in accordance
with a method as claimed in any preceding claim.

SUBSTITUTE SHEET

WO 91/10998 : PCT/GB91/00082

1/24

INPUT.
BYTE
STREAM

SEARCH
FOR
LONGEST
MATCH

BUILD
DICTIONARY
ENTRY

OUTPUT

FIG A

SUBSTITUTE SHEET

PCT/GB91/00082

" WO 91/10998

2/24

d9ld

ﬂ

NIL

s
'?h

ENERES

A

EEEEN RN
A A 'y A 4

o

o m

./\a\. ./\V\.N

|

4

EgsgzsémmwammaumgHWm

WV3HLS
31A8
1ndino

AHINT
AHYNOLLOIA
aing

SH3a1OVHVHO
Q31vIO0SsY
dN X001

Wv3HiS
QEOMIAO0
~4NdNI

SUBSTITUTE SHEET

WO 91/10998 PCT/GB91/00082

3/24

AG1

F F FIL]|F
(@) ™ R2 R3 R5 R7 H R9

2\ N2\ /10
(b)}—lt R || e l R3 |[Raf| R Eaﬁ‘(m RO g
In - GROUP - [10
(c) z_j R n2 R3 ,h4; RS ;Rq R7 ERB?)QST?'.\DD(
5 3/ % s

SUBSTITUTE SHEET

PCT/GB91/060082

WO 91/10998 :
4/24
0
\
=
E
Ly
HHE
> > E
3z 5
(92
gz |8
8|8 2
}
~ \
g ~
LL.

A

SUBSTITUTE SHEET

PCT/GB91/00082

WO 91/10998

5/24

321S V3V YLYQ SNNIN 32IS dNoLD
INNOD 3LA9 QHOO3H WLO0L

INNOD 3LAG 1HVd NI

INNOD 3LAG LHVd 310aIN

INNOD 31AR LHYd LSHId

INNO 3LA9 QHOO3H TINd

(S3dAL YV LNJH34I0 AJINDIS) 10

INNOD

£ Did

0 0 0 X 0 0 0 || AHINZdNS
L 00 X 0 0 0 0| INNODWIOL
0 0 0 X 0 } | 0| GHOO3HOLHVdQONT
0 0 0 X 0 0 | 0| Q4003440.1HvdIIAAIN
0+ 0 X 0 0 | 0| QHOJZHLHVASOLHVLS
b b 0 X 0 | | 0| (HOD3HAINIVINOD ATIVLOL
bbb X 0 0 0 0f MdvWHOLVHVGIS
AEABREEE .
ala|w|3afo]alx|s

OV

SUBSTITUTE SHEET

PCT/GB91/00082

WO 91/10998

6/24

Ve DId
3ZIS Y34V Y.LVA SNNIW 32IS dNOHD 000 X 0O0 0
INNOD 31A8 03SSIHAOD QHODIH TV.OL b 00 X } 00 0
INNOD3LA8 G3SSIHJWOD LHYd ANI 000 X + + 0
INNOJ 31A8 G3SSIHANOD LHVd T1aaIN 000 X + 01 0
INNOJ 31A8 43SSIHINOD LHVd LSHId 0L 0 X + 0 4+ 0
INNOO 31A8 G3SSIHAINGD QHOO3H 11N O O T
(S3dAL MHVW INTHILIQ AJINDIS) 10 b b L X 000 0
WHLIHODO0TV 0Q 000X + 00 0
ule[A[L[d[X[H8[d
Ut EHHEE

INNOD OV

AHIN3 dI¥S

INNOO TVLOL

QHOO3H 40 LkVd ONZ |
QHO3H 40 LHvd m.d.o_z_
(HOO3Y LHVd 40 LHVLS ..
(HOO3Y GANIVINGD ATIVLOL
MHVIV HOLVHYES

H3ENNN WHLIHODO0TY

SUBSTITUTE SHEET

WO 91/10998

7/24

FLAG COUNT
0110X011 BC1
0110X011f BC2
0000X111 FM
0110X011 BC3
0110X011 BC4
0110X011 BCS
0000X 111 FM
0110X011 BC6
0110X011 BC7
0000X 111 FM
0110X011 BC8
0000X 111 M
0100X010 BC%a
1000X000 SKIP COUNT

FIG 4

SUBSTITUTE SHEET

PCT/GB91/00082

PCT/GB91/00082

WO 91/10998
8/24
" AAG COUNT
0001X000 ALG #
0110X011 UBC1
0111X011 CBC2
0000X 111 ™
0110X011 UBC3
0111X011 CBC4
0110X011 UBC5
0000X 111 A
0111X01 1 CBC6
0110X011 UBC7
0000X111 2
0111X01 1 c8C8
0000X 111 M
0100X010 UBC 9a
1000X000 SKIP ENTRY
FIG 4A

SUBSTITUTE SHEET

PCT/GB91/00082

9/24

WO 91/10998

G Olid

AGINI XS [0 0 0 X 0 0 0 4

L. f3080 [t v ox 1o

| IR ELE
oo 21E[W[F 1013 |X]s ___
| oY1 so3u# | oan |#om| W
X .
maz "o Cuo %0 "o H|~—~p
| |
N Y,
—~
b ALLING

SUBSTITUTE SHEET

PCT/GB91/00082

WO 91/10998

10/24

VS Dld
CAHIN S [0 0 0 X 000 |
ta00 b rox o0
AR EYERIELE
iNnop (B18IA3 0 § _ _
: v W0 | 08D soau# | oan [#ow| 11|
d "to H0 % 'wo <7
z_ A"
- Y
a4l
71 b ALLIN3

SUBSTITUTE SHEET

PCT/GB91/00082

WO 91/10998

11/24

9 SOl

diNs [000X0001
S {LLOXHLLO AHINS di¥S [000X0001
(W0 b3 [100X 1000
(QnN3)*3 J00OXELED - (vis) '3 [0loXH0L0 1
538 INNO9
\I\mw f\
oz w ol 'w | % | %w |nl| (o@)w az (11S) *uo
_ .
. A
{ [<
2 ALLINT b ALLNS

SUBSTITUTE SHEET

a

PCT/GB91/00082

WO 91/10998

12/24

L Old
diXS 000X0001
.vm FEOXO0LLO
YUYW T4 FEEX0000
ALLNT FLOXELLO

INNOD ovd
% B0 | W | ‘wo
I
- A
— —
QHOO3H GAVN ALIINT

SUBSTITUTE SHEET

PCT/GB91/00082

WO 91/10998

13/24

"anoEo DAN

0L AW
QHOO3H dWOONN] [aHOD3H amooNn
N E Y G3NNVdS INOD

dNOHD IX3AN

OL 3AON

QH003H JIWOONN

AlLINZ 40
INNOJ WiOL

31T1dN00 WAL -

ALLINT G3NNVdS ALIINT G3NNVJS
QN3 INNILNOD
ALLINT 40 ALLIN3 30
1Hvd 1SV1 JHvd J1AAIN
dnNOH9 DAEN
QL 3AON

ALLINS
QSNNVAS LHVLS

1IX3 3673 ANV 4l

Qy0oo3d
(3SS3HdWOONN

3HIINS

Q3NNVdS 1hvlS

Q3SSIHJWOONN

dNO4D LGN OL IMOW] - |

30 1bvd 1HviIS

dnNOHD

ISHId LHVIS

SUBSTITUTE SHEET

K

PCT/GB91/00082

WO 91/10998

14/24

N -

6 ©Old

103r80 NOISSIHANOD
_AL

Syo

a:mo

::mo

HO

Ho

Hd

X7

WO 91/10998

O

FR

CR3

CHZ(S) H

D

CR2(2)
—
E

Y
COMPRESSION
OBJECT

D

CR2(1)

H
Al

cR,
v

SUBSTITUTE SHEET

FIG 10

PCT/GB91/00082

" WO 91/10998 : PCT/GB91/00082

FIG 11

17—

SUBSTITUTE SHEET

PCT/GB91/00082

WO 91/10998

17724

AL BT ud XJvd MI¥4d S| WS | TAS | INAS
S31A8-8 S3LAG-8 Sag-8 o S3LAE-8 JLAG-T | AAG-T | 3LAG-T | ALAG-T
T 7 g €€ ST
S~ Y1v¥Q 8ns ! arens .-~
,Ill// \\ \\\\
III \ \\-\
S - / .
-~ / - :
LE Z€ S~ Pt zZ€ 0F .
(L] | (N
378wy 1504 _ _ [“ [[378W3ud] 38wy 3ud]
(SILAB 95 40 SXI0T8 8) .*y_@ Ol
¥3uY viva ans > -
ALTHYd | TR T
S3LAG ALTHYd HO/ONY YLYQ nzp ALYTHL T | 36T | AT | N
I.IIII/ WM / .®|N \._\\\\
RN ¥1¥Q NIVW J/ aI NIVW -7
Il’l.ll \\ . \\\\
~ o / -
III \\ \\\ .
N.N /Il/l. \\ \\\\\ NN mN ’
[_ s [(\

N E R e

(S41A8 9¢ 40 SM30718 821)

Y34y Yivd NIVW

€} DI

SUBSTITUTE SHEET

PCT/GB91/00082

WO 91/10998

18 /24

X3ANI

\ €

\

~

(SIWvY4 ¢2)

dnoys

-

-
-

-

6€
o

-

Gl o4
SE | mm4 mmﬂ _mm4 n
T B ELT

A3078 v3Yy viva ans

LE

TTUUTETY

Y3y

<

viva

1 . %zmm,

SUBSTITUTE SHEET

» 19 / 24 PCT/GB91/00082

WO 91/10998

U
*[ss3uo03a|ssuaina|ovown jrovas fova LT javon | .
43 TI0MINOD WO3/W08 — uufﬁ%ﬁwv
%330 QMY 4 QMd° ¥3TI04INDD HILSAS . gs
TN
) a i
L8 75 €S Wm
HOIRENII
- | NIWIL 4 ¢S 99 |- IS
| : :
m 18 | &1 Vas)
7 43448
. L m%wn 7
! ¢L pu
| A gL / 00 g€ _,
2 S4 fIwR04 . N 9G
N 5 L
/v oLl R [N 9 | yoss30044
¥H id 1 || 805530084 [T ra * anows
¥ QW
LL .
i1y \ o
_ 59 91 DI

SUBSTITUTE SHEET

WO 91/10998 ' PCT/GB91/00082

20/ 24

MICROPROCESSOR
BUS
DATA , DATA
N | : our
——>{ FFO c — 0 b——>
N Vi V2
FLAGS CODEWORDSPONTERS CHARACTERS
EDM

FIG 17

SUBSTITUTE SHEET

DATA OUT

DATAIN

MICROPROCESSOR BUS

PCT/GB91/00082

WO 91/10998
o
©
O}
LL
| SHALOVHYHO
E [Ssquom3aod
8
STHOMIT0D
— SEILOVEVHO ~| N
>
2 3 <>
(o'
2 B 3
O
N2
STLIVIS
— N
«> & >
TOaINOD ;

SUBSTITUTE SHEET

EXTERNAL MEMORY INTERFACE

PCT/GB91/00082

WO 91/10998

20/24

6l
1 DI o
., y\ . — LS
/
Z9 i9
<> S >
$30008NS)
. , HIOVNVIN S o
SOVNYIA VNV BNIdNOLD _A X SOVEEINI 1 sovaimiNG oL
3OV4HIINI dﬁ g
. A N/
. / HIOVNVI H344ng d3d
mm 30VdS _
4N -
L5 8g

SUBSTITUTE SHEET

WO 91/10998 PCT/GB91/00082

N

92d

N.
CONTINUE

96 — EXaMINE INDEX

97~ ALC.BUFFER ADDR.

98 — REPORT READY |

@ . FiG20A

SUBSTITUTE SHEET

WO 91/10998

PCT/GB91/00082

92b

N

N

CONTINUE

N

94 —

NORMAL READ

96 — ExaMINE INDEX_

7 ~"1oALCBUFFER ADDR.

98 REPﬁRTlREADY
B0

SUBSTITUTE SHEET

FIG 20B -

INTERNATIONAL SEARCH REPORT

Internatlonal Application No PCT /GB 91/00082

T CLASSIFICATION OF SUBJECT MATTER (i severa! classification symbols apply: indicate ff) ¢
According fo International Patent Classification (IPC) or to both National Classification and IPC
IPCS: G 11 B 20/00, G 11 B 20/12 .

1. FIELDS SEARCHED

Minimum Documentation Searched 7

" | Classification System | Classification Symbols

5
]
PC | HO03 M, G1l B

Documentation Searched other than Minimum Documentation
to the Extsnt that such Documents are Included in the Fields Searched ®

T ..

1ll. DOCUMENTS CONSIDERED TO BE RELEVANT®
Category * | Citation of Document, ¥ with indication, where appropriate, of the relevant passages 12 Relevant to Claim No. *?
X Hitachi Review, volume 36, no. 4, August 1,2,4,11
1987, {(Tokyo, JP),
K. Fujita et al.: "H-6485 magnetic
tape subsystem", pages 193-200
see figure 6; page 197
X Hewlett-Packard Journal, volume 40, no. 3, 1,3,11
June 1989, (Palo Alto, CA, US),
M.J. Bianchi et al.: "Data compression
in a half-inch reel-to-reel tape
drive", pages 26-31
see page 30; left-hand column, lines
49-55
Y EP, A, 0327201 (HEWLETT~PACKARD LIMITED) 1,2,4
9 August 1989
see figures 2-9; column 4, line 8 -
column 7, line 17
A 5,8,9

© Special categories of cited documents; 19

“A* documaent defining the ral state of the art which is not S
considered to be of umr relovance f-'-ﬁ'-‘m'ﬁa""‘

tater than the priority date claimed

«T* latar document publizshed after the international
or priority date and not in confiict with the spp
erstand the principle

filing date
fication but
or theory underlying the

~g= earlisr documant but published on of sfter the intarnational ax* document of particular : the clalmed invention
filing date cannct be considersd novel or cannot be considersd to
bt A dmmdmeth may lhnr ':.oubt:u on p:'iomy c:l:ln(:zh z invaolve an inventive step
which is o establis! publicstion date « .
Siation or otner spacial reeson (a8 specified) Y™ document of patlcLr INErInCe! eriig stop when the
-0~ ment refarsing to an oral dl sure, use, sxhibition or documnﬂcmmﬂnnwnhmormmwtuwchdocu-
mmrms ¢ sclosurs, ° m;:chmhmmonbdnnmmnmsﬁﬂd

“pn ment published to the intemational filing date but
er & P "o =g* document member of the same patsnt family

iV, CERTIFICATION v .
Date of the Actual Complation of the intsrnational Search mu_uaumdmummmwmmn
18th April'1991 . |- 07 o

intornational Searching Authority . o Authorized éfw_ e
: EUROPEAN PATENT OFFICE I Daniefle

vah der Haas

Form PCT/ISA210 (second sheet) (Janusry 1965) .

International Application No

N

PCT/GB 91/00082 -2-

I11. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category * Citation of Document, 't with Indication, where appropriats, of the relevant passages Relevant to Claim No.
Y 'EP A, 0324542 (HEWLETT-PACKARD COMPANY) 1,2,4
R '19 July 1989 .
see -figures 1 2A,2B,2C; column 5
line 30; column 4, llne 33° .
A 5,7
A EP, A, 0323911 (HEWLETT-PACKARD LIMITED)
12 July 1989
A EP, A, 0327188 (HEWLETT-PACKARD LIMITED)

9 August 1989

Form PCT/ISA 210(extra sheet) (January 1985)

Sea notes on accompanying sheet

PO FORM Po479 |

ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. ¢g 9100082

SA 43981
This annex lists the patent family members relating to the patent documents cited in the above-mentioned internstional search report.

The members are as contained in the European Patent Office EDP file on 31/05/91 - -
The Earopean Patent Office is in no way liable for these particulars which are.merely given for the purpese of information.

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A- 0327201 09-08-89 . JP-A- 1204274 16-08-89
EP-A- 0324542 19-07-89 US-A- 4891784 02-01~90

JP-A- 1295325 29~11-89
EP-A- 0323911 12-07-89 JP-A- 1204275 16-08-89
EP-A- 0327188 09-08-89 JP-A- 1223672 06-09-89

For more details about this annex : see Official Journal of the Earopean Patent Office, No. 12/82

E

. r————

	2001-12-28 Foreign Reference

